The DBToaster White Paper

The DBToaster Consortium
c/o EPFL IC DATA, Station 14, CH-1015 Lausanne, Switzerland
dbtoasterf@epfl.ch

What is DBToaster?

DBToaster constitutes a quantum leap in database technology, achieving seemingly
impossible performance figures.

DBToaster is a compiler for database queries. The DBToaster compiler turns SQL
queries into highly efficient C++ or Scala code that can be run stand-alone, without
a need for DBToaster or a database system. It generates self-contained main-memory
query engines that can be easily embedded into user applications.

At the heart of the DBToaster compiler is a transform that turns SQL queries into
code that performs an extremely aggressive form of incremental view maintenance.

Code generated from SQL queries by DBToaster is usually by 1000 to 10000 times
faster at keeping SQL views fresh than state-of-the-art database and data stream
processing systems.

DBToaster provides a unique blend of the advantages of data stream/complex event
processing (CEP) engines and relational database systems. Like stream engines,
DBToaster supports continuous queries: It keeps a fresh query result available at
all times. Like relational database systems, DBToaster provides rich support for
analytical queries using the SQL language. DBToaster does not suffer from the
semantic limitations of stream engines: it does not impose window semantics. At the
same time it does not suffer from the high query latencies of relational database
systems. High volume data streams can be seamlessly and efficiently combined with
historical data.

DBToaster was designed with applications such as (database) monitoring and low-
latency trading in mind. These are domains in which analytical queries arise but
where window semantics is Jjust not acceptable: Take, for example, algorithmic
trading with order book data. An order book is a table of orders waiting to be
executed on an exchange. This table is updated very frequently; however some orders
persist for a relatively long time span before they are executed or removed. There
is a need for relatively sophisticated analytics, often involving relatively large
volumes of further data (historical financial data, sentiments from the internet,
etc), but the analyses are only useful if they can be obtained with extremely low
latency to enable effective buying and selling decisions.

DBToaster is the first data management system to support such applications. It
allows to express analytics in a declarative language such as SQL, greatly improving
programmer productivity compared to the state-of-the-art, which is to implement such
analyses in a high-level programming language to provide sufficient speed.



How well does it perform? (As of 2012)

DBToaster has been experimentally evaluated in a peer-reviewed publication to be
presented at the VLDB Conference in 2012:

DBToaster: Higher-order Delta Processing for Dynamic, Frequently Fresh Views. Yanif
Ahmad, Oliver Kennedy, Christoph Koch, and Milos Nikolic.

Proc. VLDB 2012, Istanbul, Turkey.
http://www.dbtoaster.org/papers/pvldb2012-dbtoaster.pdf

The benchmark we used consists of analytical SQL queries on financial (order book)
and TPC-H datasets. The results in that paper show that for our benchmark, DBToaster
outperforms state-of-the-art relational DBMS and data stream processing engines by 4
orders of magnitude or more. This means that the latency and update rates of views
are frequently improved by a factor of 10000 and more over state-of-the-art systems.
For details on the benchmark, experimental setup, and results, see the paper.

Current performance

Release 2 (made available in August 2014) makes use of a completely rewritten
compiler backend. This results in another greater than 10x on average performance
improvement of the generated code. See

http://www.dbtoaster.org/index.php?page=home&subpage=performance

for a performance comparison of the current and previous releases of DBToaster with
the two commercial systems of the VLDB 2012 paper.

Who should use DBToaster?

We do not claim that DBToaster is the right solution for everyone, but you should
check out DBToaster if you need to

* maintain materialized views of complex SQL queries,

* read these views and care about very high refresh rates / low refresh
latencies,

* work with standing (aka continuous) rather than ad-hoc queries, i.e. you want
to monitor the changing result of a given query over time, as the data changes, and
* do not work with extremely large datasets (this is a temporary restriction

until we release our parallel/secondary storage runtimes).

DBToaster may be also right for you even if you do not care so much about low view
refresh latencies: DBToaster turns a set of queries into efficient specialized code
for processing just these queries. DBToaster generates code that you can link into
your applications. No further software (such as a separate database server or CEP
engine) is required. Thus DBToaster is a very lightweight way of including fixed
(parameterized) SQL queries in your applications.



How does it work?

In a nutshell, what DBToaster does is express SQL queries in an internal calculus
that allows to compute -- in the same sense as for mathematical functions -- the
(discrete) derivative of any query, even the derivatives of derivatives. A
derivative captures how a query result changes when the database is updated.
DBToaster essentially maintains a query via the sequence of all its derivatives
(that is, the derivative, the derivative of the derivative, the derivative of the
derivative of the derivative, and so on). Using these, a materialized view can be
kept fresh under database updates by summing up derivative function values, with no
need for classical query operations such as joins.

The details of the DBToaster technology are not easy to explain, and did require
groundbreaking progress in the theory of databases and query algebras as well as in
query optimization and compiler technology.

The DBToaster technique performs provably better at keeping materialized views fresh
than any previous technique. It even performs asymptotically better: the improvement
is not by a constant factor, but grows even on a relative scale as one considers
larger and larger data. This was shown in the paper

Christoph Koch: Incremental query evaluation in a ring of databases. Proc. PODS
2010: 87-98.
http://www.dbtoaster.org/papers/pods2010-ring.pdf

(Beware that this is a paper written for researchers in theoretical computer
science.)

Features

Speed: See above, how well does it perform?

Materialized views of nested queries: DBToaster supports efficient materialized
views of nested SQL queries. Many commercial database systems support materialized
views / incremental view maintenance, but no other system does so for nested SQL
queries, even though they are essential for complex analytics.

Nesting refers to the presence of select-statements (SQL queries) in the SELECT,
FROM, or WHERE clauses of SQL queries.

C++ and Scala code generation: DBToaster is able to generate both C++ an Scala code
that can be integrated into applications written in these languages (as well as
Java, since Scala lives in the Java ecosystem and compiles to Java Bytecode that can
be linked with Java applications).

License

Copyright (c) 2009-2014, The DBToaster Consortium.



All rights reserved.

The DBToaster technology is protected by pending US and international patents.

The DBToaster software is provided free of charge for evaluation, teaching,
learning, and research purposes.

If you would like to use DBToaster in any other form, contact us at
dbtoaster@epfl.ch
or at

DBToaster Consortium,
c/o EPFL IC DATA, Station 14,
CH-1015 Lausanne, Switzerland

Redistribution with or without modification is prohibited unless explicit permission
is granted by the copyright holders.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES

(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

The views and conclusions contained in the software and documentation are those of
the authors and should not be interpreted as representing official policies, either
expressed or implied, of The DBToaster Consortium.

Benchmarking and experimentation

You are invited to perform and report on benchmark results and experimental
comparisons of your system against DBToaster, but we ask you for fairness and to run
DBToaster with settings that allow it to perform at its best. Specifically, the
DBToaster interpreter mode is provided for your convenience and is not to be used
for timing purposes. For the purpose of comparison with other data management
systems, please use the C++ rather than the Scala backend. Please contact us if you
have questions about how to optimize the performance of DBToaster.

Can I use DBToaster right away in my commercial/production environment?



No. See licensing above. You need to contact us if you want to use DBToaster for
anything other than evaluation, research, and learning purposes.

However, the license allows you to find out whether DBToaster is relevant to you. We
would love to hear from you what features you would need to make DBToaster useful to
you.

Continuity and long-term plans of the project
DBToaster is a research project and not a commercial venture. However:

* We consider DBToaster a long-term project that is still in an early phase.
Expect follow-up releases that will substantially improve its features, quality, and
performance.

* If there is considerable interest in deploying DBToaster, we plan to create a
support organization, either by open-sourcing it, by commercializing it, or both.

* Despite its character as a research project, we do have the resources to
create high-quality and ultimately production-quality software. We intend to provide
support in the form of fixing reported bugs, (within reasonable limits) respond to
questions on the use of DBToaster, and implement requested features if they are
consistent with our project vision. We are committed to furthering knowledge and
making our results publicly available with all the resources currently available to
us: this is not in conflict with making our work relevant to as many users as
possible.

* The current release, DBToaster 2 (rev. 3263), contains features and APIs that
are not considered stable. We do not provide any guarantee of backwards
compatibility of applications you build using the current DBToaster APIs. Our APIs
will stabilize, and we will make such commitments in the future. Starting with next
release of DBToaster, we plan to provide a matrix of stable vs. experimental
features.

For researchers

The principles underlying DBToaster are presented in a number of technical papers
available at

http://www.dbtoaster.org/index.php?page=research

Currently we do not give away the source code of the DBToaster compiler (the runtime
system has been open-sourced already).

We provide a binary of the DBToaster compiler plus a source code distribution of the
runtime libraries (which are kept simple to facilitate integration with various

applications).

However, researchers can obtain, upon request, additional resources for reproducing



our experiments and comparing DBToaster to other systems.

Current limitations

Limited SQL support: Currently DBToaster does not support all of SQL. Features not
supported include:

* NULL values and outer joins.
* The ORDER BY clause.
* The aggregates MIN and MAX. These can be expressed using nested SUM

aggregates, but this is not a particularly efficient solution. (All SQL aggregate
functions will be supported soon.)

* A number of functions for manipulating strings and dates.

We are working on providing more complete support of the SQL standard.

Parallelization and scalability: The runtime system we currently provide is single-
core and maintains data in main memory. Parallelizing and optionally secondary-
storage runtimes are under development and will be released soon. Furthermore, a PL-
SQL code generator backend for DBToaster is under development that will allow tight
integration with relational DBMS such as Oracle or Postgres.

The DBToaster roadmap

Milestone 1: (Dec 2014)
* A parallel runtime for DBToaster.

Milestone 2: (June 2015)

* Frontends for APL-style array processing languages (The R analytics language;
Matlab; Q). That is, DBToaster will be able to compile analytical queries expressed
in such languages in addition to SQL, with similar performance.

* Implement the remaining missing SQL query features to support TPC-H, minus
ORDER-BY, MIN/MAX, and NULL values/outerjoins.

Milestone 3: (Dec 2015)

* Synthesize (tree) data structures for efficiently processing and indexing
theta-joins.

* Support order. ORDER-BY, MIN, and MAX.



